• Can only be checked out by Animation (ANIM), Broadcast (BCST), Visual Effects (VSFX) and Interactive Game and Development (ITGM) Students enrolled in Montgomery Hall classes.
  • 5 hour check-out limit

Kit Includes:
(1) Mocap Headband
(1) Mocap Suit (S, M, L, XL,XXL)
(1) Pair of Gloves (S or L)
(1) Pair of Shoes (Several Sizes Available)
(53) Mocap Markers

Motion tracking or motion capture started as a photogrammetric analysis tool in biomechanics research in the 1970s and 1980s, and expanded into education, training, sports and recently computer animation for cinema and video games as the technology matured. A performer wears markers near each joint to identify the motion by the positions or angles between the markers. Acoustic, inertial, LED, magnetic or reflective markers, or combinations of any of these, are tracked, optimally at least two times the rate of the desired motion, to submillimeter positions.

Optical systems utilize data captured from image sensors to triangulate the 3D position of a subject between one or more cameras calibrated to provide overlapping projections. Data acquisition is traditionally implemented using special markers attached to an actor; however, more recent systems are able to generate accurate data by tracking surface features identified dynamically for each particular subject. Tracking a large number of performers or expanding the capture area is accomplished by the addition of more cameras. These systems produce data with 3 degrees of freedom for each marker, and rotational information must be inferred from the relative orientation of three or more markers; for instance shoulder, elbow and wrist markers providing the angle of the elbow.

Passive optical system use markers coated with a retroreflective material to reflect light back that is generated near the cameras lens. The camera's threshold can be adjusted so only the bright reflective markers will be sampled, ignoring skin and fabric.

The centroid of the marker is estimated as a position within the 2 dimensional image that is captured. The grayscale value of each pixel can be used to provide sub-pixel accuracy by finding the centroid of the Gaussian.

An object with markers attached at known positions is used to calibrate the cameras and obtain their positions and the lens distortion of each camera is measured. Providing two calibrated cameras see a marker, a 3 dimensional fix can be obtained. Typically a system will consist of around 6 to 24 cameras. Systems of over three hundred cameras exist to try to reduce marker swap. Extra cameras are required for full coverage around the capture subject and multiple subjects.

Vendors have constraint software to reduce problems from marker swapping since all markers appear identical. Unlike active marker systems and magnetic systems, passive systems do not require the user to wear wires or electronic equipment rather hundreds of rubber balls with reflective tape, which needs to be replaced periodically. The markers are usually attached directly to the skin (as in biomechanics), or they are velcroed to a performer wearing a full body spandex/lycra suit designed specifically for motion capture. This type of system can capture large numbers of markers at frame rates as high as 2000fps. The frame rate for a given system is often traded off between resolution and speed so a 4 megapixel system runs at 370 hertz normally but can reduce the resolution to .3 megapixels and then run at 2000 hertz.